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Abstract

The purpose of this techbase project was to investigate the use of parallel array data types to reduce the
memory footprint of the Livermore Equation Of State (LEOS) library. Addressing the memory
scalability of LEOS is necessary to run large scientific simulations on IBM BG/L and future
architectures with low memory per processing core. We considered using normal MPI, one-sided MPI,
and Global Arrays to manage the distributed array and ended up choosing Global Arrays because it was
the only communication library that provided the level of asynchronous access required. To reduce the
runtime overhead using a parallel array data structure, a least recently used (LRU) caching algorithm
was used to provide a local cache of commonly used parts of the parallel array. The approach was
initially implemented in a isolated copy of LEOS and was later integrated into the main trunk of the
LEOS Subversion repository. The approach was tested using a simple test, tstcalc Managan.c.
Testing indicated that the approach was feasible, and the simple LRU caching had a 86% hit rate.

Introduction

Because of the trend toward smaller amounts of memory per processing core, LLNL must ensure that
all components of its large simulation codes scale in memory as well as processing speed. The original
Livermore Equation Of State (LEOS) library, a package used widely by LLNL simulation codes, stores
a complete copy of its large interpolation coefficient arrays on each processor, and this approach does
not scale in memory. This techbase investigated using a parallel array data structure to improve LEOS's
memory scalability.

For decades in the field of high-performance computing, we have seen growth in both the processing
power and the memory available per processor. With the introduction of the IBM BG/L architecture, we
see the beginning of new trend toward lower memory per processing core and no virtual memory
capability on the compute nodes. Commodity CPU makers are focusing their effort now on making
multi-core chips rather than continuing to focus on clock speed and better pipelining, so for the next
decade we are likely to see the number of processing cores growing significantly faster than the amount
of memory per board. This means that the trend observed with BG/L is likely to appear in all of the
fastest supercomputers. For reasons of reliability and simplicity, compute nodes are not likely to have
hard disks attached to provide virtual memory.

Simulation codes configure LEOS with a list of materials and material properties that they want to be
able to calculate during the simulation. During configuration, LEOS generates a table of interpolation
coefficients for each material/property pair, and then in the physics calculation modules, LEOS
efficiently calculates physical properties and equation of the state information from precalculated
interpolation coefficient tables.

The precalculated interpolation coefficient tables are the largest part of LEOS' memory footprint; and
hence it is the data structure that we choose to address. To see the potential impact, consider a
hypothetical simulation involving 20 materials, and for each material the simulation code needs 12
types of physical properties or equation of state calculations. Assume that each calculation is generated



from a table of values with 50 points in the density (p) dimension and 50 points in the temperature (T)
dimension and that the interpolation scheme requires 12 coefficients per cell. This results in coefficient
tables that consume roughly 57MB, roughly 10% of a BG/L node's total memory. With the original
LEOS, each node stores a complete copy of the tables.

This techbase produced a modified LEOS that divides the coefficient tables into pieces, and each
processor only stores its share of the complete coefficient table. If the total memory LEOS requires for

its coefficient tables is n, the approximate memory footprint per process now scales as ; where p is
the number of processes (normally equivalent to the number of ranks in an MPI job).

This approach essentially solves the memory scalability problem, but it introduces a runtime
performance overhead because processes now have to fetch the interpolation coefficients from other
processors, incurring the communication overhead of round trip communication between processes.
Depending on the latency between nodes, the overhead could outweigh the benefits of using the
precalculated interpolation coefficients in the first place.

However, our intuition is that most of the communication overhead can be avoided by adding a
software cache on top of the parallel coefficient table data structure. Simulation calls to LEOS do not
randomly sample the T-p space; rather, their access pattern usually follows a fairly predictable
trajectory. We can use caching to retain performance while still reducing the memory footprint per
process.

Requirements & Ramifications on the Approach

The first state of the project was to determine how LEOS was used and what requirements from the
LEOS end users would impact the project implementation. These requirements were gathered through
conversations with members of the Kull and ALE3D development teams. In this section, each key
requirement is listed, and its impacts are discussed.

LEOS calls are not collective

With the exception of the initialization and finalization calls, LEOS calls are not collective. There is no
attempt to coordinate calls to LEOS or to guarantee that every MPI rank calls LEOS at the same time.
This requirement means that we could not use normal MPI communication or even one-sided MPI
communication. Despite its name, one-sided MPI communication requires collective calls to

MPI Win_ Fence. The Global Arrays (GA) toolkit from Pacific Northwest National Laboratory
provides asynchronous, one-sided access to distributed data without explicit cooperation from the
process holding the data.

LEOS may be initialized and finalized several times

During a given simulation run, LEOS may be initialized and finalized multiple times. Often a
simulation starts out with an initial set of materials and types of physical properties and equation of
state calculations it requires, and later, it may come to a regime where it needs to increase the list of
materials. The simulations accomplish this by finalizing (freeing up LEOS resources with a call to
leos fin_1ib) LEOS and then reinitializing it with another call to leos_init.

This requirement forces LEOS to use GA without its Memory Allocator (MA) subsystem. Typical GA
usage requires an a priori upper bound on the memory to be allocated by GA. It's possible (although
tedious) to calculate an upper bound on memory usage for a particular call to Leos init, but the



upper bound calculated during the first call to Leos 1nit is not likely to be a good upper bound for
the whole run given that simulations may add new materials as the simulation progresses.

Manoj Krishnan, one of the GA developers from PNNL, provided me with the undocumented (but
apparently supported) procedure to build GA to use malloc and free instead of the MA subsystem. With
these modifications, GA does not require the a priori upper bound on memory usage. For more details
on building GA, see the appendix.

Multiple LEOS configurations in a simulation

Some simulations have different materials or different calculations on different processes in a large
MPI run; hence, they often have LEOS configured differently on different MPI processes. In the
extreme case, each individual process could have its own configuration of LEOS, but this case destroys
the possibility of parallelizing the coefficient array data across multiple processor because there is no
way to know a priori which processors can share data. Rather than coding for the extreme case, we
assume that each MPI communicator (potentially a subcommunicator) has the same LEOS
configuration. For the GA version of LEOS to work, all calls to Leos_init and leos fin_ 1lib
must be collective over an MPI communicator.

If different parts of the MPI run have different LEOS configurations, the simulation must call a new
LEOS API routine, Leos parallel init, before calling Leos init. This function has two
arguments, the MPI communicator that defines the group of MPI processes with which this process will
share data and a limit for how much memory should be used for caching array coefficients. If the client
does not call Leos parallel init, LEOS will assume that all the processes in

MPI COMM WORLD have identifical LEOS configurations, and it will cache 1/256™ of the coefficient
array data locally. In my testing, 1/256™ appeared to be large enough to provide good cache
performance.

If the client code calls Leos _parallel init before the first call to Leos _init, it must also call
leos parallel shutdown after the last call to Lleos fin lib.

leos parallel shutdown should be called before MPI Finalize because it terminates GA.
If the client does not explicitly call Leos parallel init, leos parallel shutdown gets
called during Leos fin 1lib.

Minimal changes to the external LEOS API

LEOS is a long-lived program with a simple interface. It has a wide client-base inside LLNL, and
LEOS end users are unlikely to adopt any changes to LEOS that require significant changes to their
code.

The techbase largely succeeded in adding new capabilities without changing any of the existing API
calls. It only required the addition of Leos parallel init and leos parallel shutdown.
We also add the constraint that calls to Leos_init and leos fin_ T1ib must be collective over the
appropriate communicator.

Minimal changes to LEOS internally

The techbase was not large enough to consider sweeping changes to the LEOS source code, so we had
to adopt an approach that limited the amount of code that needed to be changed. Conceptually, the
coefficient could be seen as a 5-dimensional array # materials X # functions X # density points X #
temperature points X # interpolation coefficients, and the whole 5-D array could be shared as a single



parallel array distributed across all the processors in the MPI communicator. However, each material
might have different functions, and the number of points in each of the remaining dimensions depends
on a variety of configuration parameters.

To keep the changes to LEOS manageable and in the scope of this project, we only looked at
parallelizing the 2-D and 3-D coefficient tables for each material/function pair. In the original and
modified LEOS, this information is stored in a C struct called coeff table. In the original LEOS,
whenever they needed the interpolation coefficient information, the code directly accessed the
information contained in coeff table. In the modified LEOS, we added a C function API to access
the coefficient table. By making the definition of coeff table opaque and putting a function API
between the data structure and the rest of the code, it made it possible to have two separate
implementations of the interpolation coefficient array: one based on normally allocated memory and
one based on GA distributed arrays.

The modified LEOS committed into Subversion

The goal of the techbase was to provide a working prototype that could be incorporated into the LEOS
subversion repository. This is an important step for the LEOS developers to incorporate the changes
into future LEOS releases.

Implementation

The implementation consists of two main new pieces. : —

The first piece, the interpolation coefficient data type, Interpolation Coefficients
simply establishes a C function API between the Data Type
underlying coefficient array data types and the rest of LEOS coeff.h

the LEOS library. The second piece, a distributed array
data type, manages the caching and provides an

LEOS_ coeff.c,

implementation independent API to Global Arrays. LEOS_coeff_private.h
The interpolation coefficients data type has two Distributed Array
separate implementations. First it has an Data Type
implementation that works exactly like the original darray.h

LEOS works. Each processes allocates enough :

memory to store the entire coefficient array. The darray.c

second implementation uses the distributed array data

type to achieve memory scalability. The user can Global Arrays
choose which one to use when LEOS is configured.

When the project was started, it wasn't clear which Figure 1: Implementation details

technology would be used to manage the distributed

array data. Hence, the distributed array data type was

written to support any distributed array back-end with the required functionality. This flexibility is
important if another distributed array library eclipses Global Arrays, or if a machine specific approach
must be written.

One of the limitations imposed by using Global Arrays is that we lose the ability to control the fine
details of how the array pieces are mapped to actual processors. On a machine like BG/L, it is
important to fetch data from the nearest available source, and by using GA, we lose the ability to
consider nearest neighbor optimizations. It's also worth noting that the arrays being distributed are
small enough that some processors may not have any local pieces. For example, a table with 70 points



in the density dimension and 70 points in the Temperature dimension only has a total of 4900 sets of
interpolation coefficients. Hence for runs involving more than 4900 processors, some processors will
not be storing any array elements locally (other than cached copies). If we had direct control of the
layout, we might be able to get better performance by storing several copies of the coefficient array
across subsections of the communicator. Because the distributed array is write once and read many,
there are not any cache coherence issues that would normally accompany this approach.

The implementation modifications do not include any changes to the code that generates the
interpolation coefficient because doing so would probably require writing the whole library. Each
processor calculates the whole coefficient table and temporarily stores the whole table in memory
before copying it to the distributed array data structure. This process could be parallelized from a CPU
and memory standpoint, but it was beyond the scope of the exploratory techbase.

In addition to the interpolation coefficients, LEOS stores the function values at each of the grid points.
For a property that varies in both dimensions, the means an additional # density points X #
temperature points doubles of memory. This data structure could also be distributed, but the extent of
the software changes required made it infeasible to do during this techbase.

The most challenging aspect of the implementation was modifying all the places where it directly
accessed the interpolation data structures to make a function call instead. As one measure of
complexity, a svn diff from before the modifications to after the modifications has 4,741 lines'. The
change required modifications to 26 files.

Testing

First, we tested the modified LEOS to ensure that it gave the same results as the original LEOS. To
accomplish this, the output from the tstcalc Managan. c test problem was compared between
the original and modified LEOS. The output was consistent to the number of significant digits being
printed. Second, the implementation can be compiled for debugging in which case it maintains a
complete copy of the coefficient table in addition to storing the data in the distributed array. When
compiled in this way, the code ensures that the values from the distributed array are bit-for-bit identical
with the values stored in the local copy. These two tests both verified that the scalable LEOS was
consistent with the original.

LEOS lacks a suite of comprehensive tests to validate the correctness and runtime impact of these
modifications. Runtime testing was performed with tstcalc__Managan. c and with a trivial test
problem from ALE3D provided by Jeff Keasler. Neither of these test problems accessed LEOS like a
long-running multi-physics code would, so the testing was indicative rather than definitive. The time
required to under stand the requirements, choose the appropriate technologies, and implement took the
majority of the time allocated in the techbase. There was not enough time to perform testing with full
scale multi-physics applications.

Most of the initial parallel testing took place on Thunder, and we were able to verify that the code
worked correctly and that the average cache hit rate was 86%. We were also able to make some runs on
UBGL (the unclassified BGL) before it was taken offline. These runs verified that the approach and the
tools it depends on work correctly on BG/L architectures.

Conclusions

This techbase has demonstrated that using distributed arrays to store the LEOS coefficient table is a

1 svn diff -r 1509:1517 libleos | wc -1 yields 4741.



feasible approach to make LEOS's memory use scalable on low memory per core architectures. It is
possible to make this change with only additive changes to the LEOS API and without rewriting the
library from scratch. A simple caching strategy is able to provide an 86% hit rate on simple test
problems.

Comprehensive testing in large-scale multi-physics applications would be the next natural step for this
work. In that context, it would be clear if the caching mechanism is sufficient to provide the required
performance. If the cache is not performing adequately, it may be possible to develop a custom caching
approach that includes a notion about the simulation trajectory through the phase space to provide a
higher hit rate.

If higher performance message passing approach is necessary, it may be possible to implement an
approach based on the ARMCI layer of Global Arrays. ARMCI provides lower level access to remote
memory access.
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Appendix

Building Global Arrays

Global Arrays (GA) is available from Pacific Northwest National Laboratory at
http://www.emsl.pnl.gov/docs/global/. To prevent GA from using its internal Memory Allocator
subsystem, you must edit ga-4-0-7/global/src/base. c (around line 52) adjusting for the
appropriate GA version. The end result should be that AVOID MA STORAGE is #define'd to be 1..

#define AVOID MA STORAGE 1
Now configure and build GA according to the normal installation instructions in the Global Arrays
User's Manual, http://www.emsl.pnl.gov/docs/global/user.html.

Building LEOS with distributed arrays

To build the memory-scalable LEOS, you must first build and install GA. When you configure libleos
for building, you need to specify --with-global-arrays=<GA prefix directory>. This tell configure tell
set the LEOS GLOBAL ARRAYS preprocessor symbol, and it adds the GA include directory to the
#include search path. You must also specify the appropriate MPI compilers. For example, on
thunder you would use:

./configure CC=mpiicc F77=mpiifort --with-global-arrays=<GA install prefix
directory>

If you want to active the debugging mode where it compares the GA version of the distributed arrays
versus a local malloc'ed copy, set the LLD DEBUG preprocessor symbol when compiling. To see the
cache statistics, set the LLDDARRAY DEBUG preprocessor symbol. Lastly to see a cache trace,
compile with LLDDARRAY CACHE TRACE set.

When linking against the modified libleos.a, simulations will also need to link against the following
GA libraries:

-larmci -lglobal -1lma

New LEOS API routines and Requirements

For simulations where the whole parallel computer will have the same LEOS configuration (i.e., all
calls to Leos_init and leos fin_1lib are collective), there are only two things that the code
must guarantee to be able to use the memory scalable LEOS. First, Leos 1init must come after

MPI Init,and leos fin_ 1ib must come before MPI Finalize. In this case, distributed array
will make a cache 1/256™ the size of the original coefficient array. This this approach should provide a
roughly 2 orders of magnitude decrease in the memory requirements for LEOS.

For simulations where there are several LEOS configurations, the client source code will need to be
modified to make a call to Leos parallel init and leos parallel shutdown. The call
to Leos parallel init must occur after the MPI Init call and before the first call to

leos init, and the call to Lleos parallel shutdown must occur after the last

leos fin 1ib and before MPI_Finalize. You can also use Leos parallel initto
specify how much memory should be used to provide local caching for LEOS coefficient arrays. The
amount specified is divided up proportionally because all the distributed arrays.

Here are the C prototypes for this new API calls:

/**



This call does not replace the call to leos init. It should be
called exactly once before leos init. If leos init is called before
this subroutine, leos init will call leos parallel init with

MPI COMM WORLD.

It is assumed that this call is made collectively over the whole
MPI COMM WORLD. If you initialize LEOS identically (same set of
materials, functions, interpolation settings, and extrapolation
settings) for all processors in MPI_COMM WORLD, the communicator
argument should be MPI COMM WORLD. However, if your simulation
defines subcommunicators and each subcommunicator initializes LEOS
differently, pass in the subcommunicator that this processor is
part of. This function will assume that communicator defines the
processor group that this processor is a part of, and this group
will all collectively initialize LEOS with the same arguments to
leos init.

¥ K X X K X X X X X K X X ¥ X %

*/

Integer

leos parallel init(MPI_Comm communicator, /* WORLD or subcommunicator*/
const Integer cacheMemory);

/**

This routine shutdowns down the underlying technology for sharing
interpolation coefficients across processes. It should be called
exactly once before your parallel run exits. No leos property calls
can be made after this is shutdown.

If leos init called leos parallel init (as opposed to

leos parallel init being called by the users program before
leos_init was called), leos fin lib will call

leos parallel shutdown.

It is doubtful whether leos parallel init can be successfully
called to reinitialize LEQS after leos parallel shutdown has been called.

* X K X K X X X X X ¥ X

*/
Integer
leos parallel shutdown(void);



